# How To Subtract Fractions, With Common Denominators, Or Different Denominators

## Subtract Fractions With Common Denominators

$\frac{7}{9} - \frac{1}{9} =$

The Denominators Of Both Fractions Are The Same - Subtract Numerators (7 - 1)
$\frac{\mathrm{\left(7 - 1\right)}}{9} = \frac{6}{9}$

Simplify Answer Using Greatest Common Divisor
$\frac{6}{9} = \frac{\mathrm{6 ÷ 3}}{\mathrm{9 ÷ 3}} = \frac{2}{3}$

## Subtract Fractions With Different Denominators

$\frac{7}{4} - \frac{5}{6} =$

We Must Cross-Multiply Both Fractions To Get A Common Denominator
$\frac{7}{4} = \frac{\mathrm{7 × 6}}{\mathrm{4 × 6}} = \frac{\mathrm{42}}{\mathrm{24}}$
$\frac{5}{6} = \frac{\mathrm{5 × 4}}{\mathrm{6 × 4}} = \frac{\mathrm{20}}{\mathrm{24}}$

The Denominators Of Both Fractions Are The Same - Subtract Numerators (42 - 20)
$\frac{\mathrm{42}}{\mathrm{24}} - \frac{\mathrm{20}}{\mathrm{24}} = \frac{\mathrm{22}}{\mathrm{24}}$

Simplify Answer Using Greatest Common Divisor
$\frac{\mathrm{22}}{\mathrm{24}} = \frac{\mathrm{22 ÷ 2}}{\mathrm{24 ÷ 2}} = \frac{\mathrm{11}}{\mathrm{12}}$

Recommended reading: Subtracting Fractions Calculator, How To Add Fractions, How To Multiply Fractions, and How To Divide Fractions.