How To Add Fractions, With Common Denominators, Or Different Denominators

Learn How To Add Fractions With Common Denominators Or Different Denominators

$\frac{5}{9} + \frac{8}{9} =$

The Denominators Of Both Fractions Are The Same - Add Numerators (5 + 8)
$\frac{\mathrm{\left(5 + 8\right)}}{9} = \frac{\mathrm{13}}{9} =$

Converting Improper Fraction To Mixed Number
$\frac{\mathrm{13}}{9} = 1\frac{4}{9}$

$\frac{3}{8} + \frac{5}{6} =$

We Must Cross-Multiply Both Fractions To Get A Common Denominator
$\frac{3}{8} = \frac{\mathrm{3 × 6}}{\mathrm{8 × 6}} = \frac{\mathrm{18}}{\mathrm{48}}$

$\frac{5}{6} = \frac{\mathrm{5 × 8}}{\mathrm{6 × 8}} = \frac{\mathrm{40}}{\mathrm{48}}$

Both Fractions Now Have Common Denominators - Add Numerators (18 + 40) $\frac{\mathrm{\left(18 + 40\right)}}{\mathrm{48}} = \frac{\mathrm{58}}{\mathrm{48}} =$

Greatest Common Divisor
$\frac{\mathrm{58}}{\mathrm{48}} = \frac{\mathrm{58 ÷ 2}}{\mathrm{48 ÷ 2}} = \frac{\mathrm{29}}{\mathrm{24}} =$

Converting Improper Fraction To Mixed Number
$\frac{\mathrm{29}}{\mathrm{24}} = 1\frac{5}{\mathrm{24}}$

Recommended reading: Adding Fractions Calculator, How To Subtract Fractions, How To Multiply Fractions, and How To Divide Fractions.